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FIG.4c SP 4 (blue dot in fig.4b) in the centre of the valley. The arrows denote
shadow zones. White dashed line is 1500 m s—1. (b) SP 8 on bedrock. Pd, direct 20 SAVING INTERVAL 20

wave; Pg, bedrock refraction; PbP, bedrock reflection; LR, Rayleigh waves; PS, P- 3319 MODELS SAVED 66375
wave converted to S at the sediment-bedrock contact. 652 % ACCEPTANCE RATE 6.54 %
20,16 sec TIME/MODEL 0.90 sec

(1) simulr16: Thurber CH (1983) - Bleibinhaus F and Gebrande H (2006) - Bleibinhaus F and Hilberg (2012) - Vidale JE (1990)
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true velocity (synthetic) true velocity (synthetic) . .
standard deviation standard deviation mean model: computed from an ensemble of 66384 deterministic solution: model from a deterministic standard deviation [km/s] FIG.6e

models produced by our MCMC transdimensional inversion of refraction data only. FIG.6b number of parameters: posterior distributions on

algorithm. multiple chains error maps: obtained averaging the single the number of inverse parameters for the
error maps. ensemble obtained merging the 20 Markov

Chains. The multimodal distribution suggests that
some of the chains sampled areas of the model
1.0 15 025 space corresponding to some local minima.
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FIG.3a
synthetic model: 23 sources, 23 receivers,

spacing 5 m. The travel times are computed | ! ' . ’
with an external eikonal solver(? then . ]
inverted with the transdimentional simul L —————————— 16C
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P-velocity [km s77] P-velocity [km s77] error map: the standard deviation can be computed relative error map: the percentage error gives a FIG.6¢ . .
for every node in the model providing in this way a more direct visualization of the areas of the model node map: averaging the node maps from the single

quantitative estimation of the uncertainty of a affected by an higher uncertainty. inversions results in a smoother map hence in a more
possible solution. uniform sampling of the model space.
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probability density function: the “solution” of a bayesian inversion

is the probability density function (PDF), that in this case can be
T — regarded as the probability to have a certain velocity value for each
S ;fwa\,:f,em;;)[km/z]s won given depth. Here the PDF is plotted for 7 depths and 2 profile
FIG.3b positions (black vertical lines in FiG.3a) corresponding to 17m (FIG.
mean model: obtained computing the 3d) and 60m (FIG.3e).
average value of the velocity for each node The aim of a probabilistic inversion is not to provide an optimal mean model
position over the population of accepted solution, but to provide a global overview on the probability modal model
distribution of the inverted parameters; all the possible values for a standard deviation

parameter are displayed along with their probability.
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FIG.6f
multiple chains PDF: obtained from the models sampled by the
20 independent chains. The model space has been sampled more
exhaustively, the saturation of the PDF can be therefore reached

in a shorter time.
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error map: the standard deviation can be computed for every node
in the model providing a quantitative estimation of the uncertainty
S | | | of a possible solution.
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FIG.5e

node recurrency: displays how frequently a node has 7. FUTURE DIRECTIONS

been used as an inversion parameter. This map could
be an additional tool to estimate well constrained

nodes and evaluate and optimal parameterization. In order to increase the acceptance ratio of sampled models, we are implementing
the use of the off-diagonal elements of the resolution matrix to obtain a set of

CONTACTS: trade-off relations between different inverse parameters. Having a quantitative
value to describe the inter-correlation between parameters will compensate global
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(2) J. A. Hole and B. C. Zelt Geophys. J. Int. (1995) 121, 427-434 ; 3-D finite difference reflection traveltimes




